

Large Supersonic Ballutes: Testing and Applications

FISO Telecon 06-29-2016

Dr. Ian Clark, LDSD Principal Investigator Erich Brandeau, Entry Descent and Landing Engineer

Overview

- Ballute history
- Parachute deployment device
- Ballutes as SIADs
- Use with high-beta entry vehicles
- Future work

06/29/2016 2 jpl.nasa.gov

Trailing Decelerator Development

- Beginning in 1960's, NASA and the Air Force began researching and developing trailing decelerators for launch vehicle and entry vehicle recovery
- Initial concepts focused on simple geometries like cones and spheres and quantifying their aerodynamic performance
- Later geometries evolved to consider a more structurally optimal shape

Ref: NASA TN D-1601

Isotensoid Theory

- An engineer at Goodyear (Houtz)
 developed a more structurally optimal
 geometry => Isotensoid
 - Allows for use of thinner gage, and lighter, materials
- Ideally, isotensoid theory creates a stress state that is equal in both radial and circumferential directions
 - Actual implementation has concentrations due to drag and presence of a burble fence that creates a load concentration
 - Resulting geometry is still relatively lowstress though
- This trailing isotensoid concept was termed a "ballute" by Goodyear aerospace corporation

Ref: Goodyear Aerospace Corp

Goodyear Ballute Development

- Goodyear continued to mature the ballute concept through the decade, largely through Air Force sponsorship
 - Aerodynamic Deployable Decelerator
 Performance Evaluation Program (ADDPEP)
- Program covered significant analysis, maturation of materials, supersonic wind tunnel testing, and multiple sounding rocket flights of 5-ft diameter test articles
- Overall very successful program that matured the concept significantly

Bloetscher, F., "Aerodynamic Deployable Decelerator Performance Evaluation Program, Phase II," Air Force Flight Dynamics Laboratory Technical Report, AFFDL-TR-67-25, Apr. 1967.

Aerodynamics

- Compilation of performance data shows rather consistent performance, though much of it behind slender bodies
- Qualitative assessment of stability always very favorable
 - Very little motion of the ballute in the wake of a vehicle

Ref: Goodyear Aerospace Corp

Ref: Smith, B. P., Tanner, C. L., Mahzari, M., Clark, I. G., Braun, R. D., Cheatwood, F. M., "A Historical Review of Inflatable Aerodynamic Decelerator Technology Development," *IEEE Aerospace Conference*, Big Sky, MT, March 2010, IEEEAC Paper #1276.

Inflation & Deployment

- Closed, isotensoid design is amenable to pressurization via ram-air
- Most designs incorporated a number of inlets on the periphery of the ballute for this purpose
 - Early versions were raised to get out of the boundary layer and get higher total pressure air, more recent concepts utilized surface mounted inlets for simplicity
- Most flight tests also incorporated some sort of inflation aid to provide initial pressurization
 - Exception was a 5.5 m ballute tested by NASA which failed to inflate successfully

Ref: Nebiker, F. R., "Aerodynamic Deployable Decelerator Performance-Evaluation Program," Air Force Flight Dynamics Laboratory Technical Report AFFDL-TR-65-27, Aug 1965.

Additional Usage Examples

 After initial development, the ballute saw numerous applications as a supersonic decelerator or stabilization device

Examples

- Gemini ejection seat stabilization
- Meteorological Sounding Rocket Decelerator
- Proposed as pilot for Mars Viking Mission by Martin Marietta

06/29/2016 8 jpl.nasa.gov

Recent Experience: NASA LDSD ballute

- Developed as a parachute deployment pilot device
- Flown at Mach 2.7, 500 Pa in a blunt-body wake
- Specs:
 - Silicone-coated Kevlar broadcloth
 - Pyrotechnic-initiated methanol inflation aid
 - Mortar-deployed
 - 18 kg mass
 - 8000 N drag force
- Heavily relied on analysis, with minimal testing prior to supersonic flight

LDSD Supersonic Flight Dynamics Test Overview

jpl.nasa.gov

Recent Experience: NASA LDSD Supersonic

Test:

After success of LDSD ballute, how can this be infused into a Mars mission?

- 1. Parachute deployment (same use as LDSD)
- 2. Supersonic decelerator
 - On a heavy robotic mission (4.4m trailing ballute against 6 m attached toroid)
 - Aerodynamic decelerator assisting supersonic retropropulsion (human-scale)

06/29/2016 12 jpl.nasa.gov

Ballutes as Parachute Deployment Devices

Preliminary ballute sizing for parachute deployment:

$$D \downarrow 0 = 2\sqrt{m} \downarrow deploy / \pi C \downarrow D ($$

$$V \downarrow LS \uparrow 2 / 2qx \downarrow LS + 1/\beta \downarrow V)$$

Assumptions:

- Constant deployment mass
- Constant Cd
- Constant q

Nominal inputs represent typical Mars conditions

- Mach 1.7, 400 Pa parachute deployment
- 200 kg/m² vehicle ballistic coefficient
- 38 m/s parachute line stretch velocity

Parachute Deployment Device (PDD): Mass Comparison

In order to compare mortars to pilot deployment, we consider the following:

- Parachute mass model, f(D₀)
- Ballute mass model, f(D₀)
- Mortar mass model, f(m_{eiect})
- Pilot ballute model, (previous chart)

Conclusions:

- Ballute PDD offers mass savings over parachute mortar
- Parachute mortar has advantage of single stage system

Trade simplicity with mass

SIADS: Trailing Ballute vs Attached Toroid

- Future Mars landing mission with a ballistic coefficient of 230 kg/ m² and low L/D
 - The trajectory never achieves deployment conditions of the current technology parachutes
- Need for a supplementary decelerator. We considered "Off the Shelf" tech SIADs on a 4.7 m diameter aeroshell:
 - Trailing ballute (4.4 m LDSD)
 - Attached toroid (6 m LDSD)
- Both SIADs deployed at Mach 3 for a direct comparison

SIADS: Trailing Ballute vs Attached Toroid

Attached Toroid

- 106 kg (6 m diameter + gas generators, no cover panels)
- More complicated mechanical interface
- Uses relatively empty real estate on back shell
- Requires thermal protection during hypersonic phase

Trailing Ballute

- 33 kg (4.4 m diameter + mortar)
- Relatively simple mechanical interface
- Must share aft section of entry vehicle with parachute

Ballutes for High Ballistic Coefficient Vehicles

- Without new designs and qualifications, parachutes can't be used with high (>= 500 kg/m²) ballistic coefficient vehicles
 - Terminal velocity exceeds Mach number limits for parachutes
 - Dynamic pressure is 10x typical
- This defines what environments the ballute needs to survive
 - Desire capability at Mach 4 and 5 kPa

06/29/2016 17 jpl.nasa.gov

Ballute-Assisted Supersonic Retropropulsion

9.3 m ballute minimizes decelerations mass (50% less decel mass)

4.5 m ballute provides 25% less deceleration mass

Calculated deceleration mass as a function of ballute diameter.

Inputs:

- 9 metric ton entry mass, single stage entry, 4 m diameter aeroshell
- Low L/D (0.24)
- No parachute, fully propulsive descent
- Ballute is deployed at Mach 3.5

Technology Development

Heating

- Drives deployment Mach number
- Current deployment limits from conservative CFD + thermal model
- Temperature measurements are needed to validate models

Fabric Development

- Past ballutes have used lightweight high-temperature fabrics
- LDSD ballute used the lightest Kevlar fabric that was available within schedule and budget constraints
- LDSD fabric had more than enough strength, but suffered from low seam efficiencies due to the characteristics of the fabric

Ballute Accomodation

 Mechanical configurations should be studied to determine how to package a ballute and parachute into the aft of the aeroshell

Summary

- Ballutes have a lengthy history of providing drag and stability at supersonic conditions
- LDSD ballute was flown twice successfully
 - 4.4 m diameter was particularly large for the parachute deployment
- Ballutes can offer mass savings when used as a parachute deployment device
- Ballutes can also be used as supersonic decelerators
 - Prior to parachute deployment
 - Prior to retropropulsion

Additional References

- Brandeau et al., "Ballutes for Supersonic Deceleration at Mars," IEEE Aero March 2016
- Clark, I. G., Adler, M., Manning, R., "Summary of the First High-Altitude, Supersonic Flight Dynamics Test for the Low-Density Supersonic Decelerator Project," 23rd AIAA Aerodynamic Decelerator Systems Technol- ogy Conference and Seminar, March 2015, Daytona Beach, FL, AIAA 2015-2100.
- Tanner, C. L., O'Farrell, C., Gallon, J. G., Clark, I. G., Bose, D. B., Witkowski, A., Woodruff, P., "Pilot Deployment of the LDSD Parachute via a Supersonic Ballute," 23rd AIAA Aerodynamic Decelerator Systems Technology Conference and Seminar, March 2015, Daytona Beach, FL, AIAA 2015-2128.
- Muppidi, S., Van Norman, J. W., O'Farrell, C., Bose, D., Clark, I., "Computational Analysis and Post-Flight Validation of Ballute Aerodynamics," 23rd AIAA Aerodynamic Decelerator Systems Technology Conference and Seminar, March 2015, Daytona Beach, FL, AIAA 2015- 2116.
- Alexander, W. C. and Lau, R. A., "State-of-the-Art Study for High-Speed Deceleration and Stabilization Devices," NASA Contractor Report CR-66141, Sep 1966.

06/29/2016 21 jpl.nasa.gov

Acknowledgements

This work was performed as part of the Low Density Supersonic Decelerators project at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with NASA.

06/29/2016 22 jpl.nasa.gov

jpl.nasa.gov