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Overview   

•  Ballute history 
•  Parachute deployment device 
•  Ballutes as SIADs 
•  Use with high-beta entry vehicles 
•  Future work 
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Trailing Decelerator Development 

•  Beginning in 1960’s, NASA and the Air 
Force began researching and 
developing trailing decelerators for 
launch vehicle and entry vehicle 
recovery 

•  Initial concepts focused on simple 
geometries like cones and spheres 
and quantifying their aerodynamic 
performance 

•  Later geometries evolved to consider 
a more structurally optimal shape 
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Isotensoid Theory 
•  An engineer at Goodyear (Houtz) 

developed a more structurally optimal 
geometry => Isotensoid 

–  Allows for use of thinner gage, and lighter, 
materials 

•  Ideally, isotensoid theory creates a 
stress state that is equal in both radial 
and circumferential directions 

–  Actual implementation has concentrations 
due to drag and presence of a burble fence 
that creates a load concentration 

–  Resulting geometry is still relatively low-
stress though 

•  This trailing isotensoid concept was 
termed a “ballute” by Goodyear 
aerospace corporation 
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Goodyear Ballute Development 

•  Goodyear continued to mature the ballute 
concept through the decade, largely 
through Air Force sponsorship 

–  Aerodynamic Deployable Decelerator 
Performance Evaluation Program (ADDPEP) 

•  Program covered significant analysis, 
maturation of materials, supersonic wind 
tunnel testing, and multiple sounding rocket 
flights of 5-ft diameter test articles 

•  Overall very successful program that 
matured the concept significantly 

06/29/2016 5 

Recovery Systems ____________ GOO DYEAR A EROSP ACE " 

ADDPEP  

J  
J  

J  
J  
J  
jl 

J  
J  
J 

 

J 
RS-SS 

J 

ADDPEP [ree -[l ight deployment sequence Bloetscher, F., “Aerodynamic Deployable Decelerator Performance Evaluation Program, Phase 
II,” Air Force Flight Dynamics Laboratory Technical Report, AFFDL-TR-67-25, Apr. 1967.  



j p l . n a s a . g o v  

Aerodynamics 

•  Compilation of performance data 
shows rather consistent 
performance, though much of it 
behind slender bodies 

•  Qualitative assessment of stability 
always very favorable 

–  Very little motion of the ballute in the 
wake of a vehicle 
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Recovery Systems __ ___________ AEROSPACE___ GOODYEAR • 

PRIME PROGRAM 
The purpose of tests conducted for The Martin Company under Contract 

SA0261 was to establish de sign parameter s for a minimum -weight drogue de-

vice capable of satisfying the performance requirements of the Air Force's 

SV -SD PRIME (!'re cis ion ecover y !.ncluding Maneuve rable re -entry 

vehicle. Included were a series of te sts in the Arnold Engineering Develop-

ment Center's propulsion wind tunnel, Tullahoma, Tenn., in which Hyperflo 

and PARASONIC a parachutes and BALLUTEs a were tested for comparative 

performance at various calibers at the after part of the forebody, atvarious 

Mach number s, and at dynamic pres sure s behind symmetrical and uns ym-

metrical forebodie s. 

One program objective was to evaluate the effects on decelerator perfor-

mance of airflow as a variant withforebody shape, angle of attack, and con-

trol surface activity. These tests produced significant data on decelerator 

pe rformance in s ymmetri cal and uns ymmetrical wake s. The uns ymme trical 

forebody employed was a full-scale model of the PRIME vehicle. 

As a result of its initial work, GAC assumed responsibility for the develop-

ment of the entire recovery system for the PRHvlE vehicle. 

PRIME tes t vehi cle and BALLUTE in fl ight attitude 

a TM, Goodyear Aerospace Corporation, Akron, Ohio. 

Ref: Goodyear Aerospace Corp 

Ref: Smith, B. P., Tanner, C. L., Mahzari, M., Clark, I. G., Braun, 
R. D., Cheatwood, F. M., “A Historical Review of Inflatable 
Aerodynamic Decelerator Technology Development,” IEEE 
Aerospace Conference, Big Sky, MT, March 2010, IEEEAC 
Paper #1276.  
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Inflation & Deployment 

•  Closed, isotensoid design is amenable 
to pressurization via ram-air 

•  Most designs incorporated a number of 
inlets on the periphery of the ballute for 
this purpose 

–  Early versions were raised to get out of the 
boundary layer and get higher total pressure 
air, more recent concepts utilized surface 
mounted inlets for simplicity 

•  Most flight tests also incorporated 
some sort of inflation aid to provide 
initial pressurization 

–  Exception was a 5.5 m ballute tested by 
NASA which failed to inflate successfully 

06/29/2016 7 

SE

BURBLE FENCE

25 (DEC- B
C

15 GORf P4 TERl?.

4.50

60.0 DIAM3.R

I BURBLE FENCE AREA

IN E KEEPER RING

14.5

3.4.

20.8271.63

Ref: Nebiker, F. R., “Aerodynamic Deployable Decelerator 
Performance-Evaluation Program,” Air Force Flight Dynamics 
Laboratory Technical Report AFFDL-TR-65-27, Aug 1965. 



j p l . n a s a . g o v  

Additional Usage Examples 

•  After initial development, the 
ballute saw numerous 
applications as a supersonic 
decelerator or stabilization 
device 

 
Examples 
•  Gemini ejection seat stabilization 
•  Meteorological Sounding Rocket 

Decelerator 

•  Proposed as pilot for Mars Viking 
Mission by Martin Marietta 
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GEMINI BAllUTE 
Under Contract 430157 with McDonnell Aircraft Corporation, Goodyear 

Aerospace developed and qualified the BALLUTEa system used to stabilize 

the Gemini astronauts after high-altitude emergency ejection (7,500 to 

79,000 ft). Mach numbers ranged to 1. 92, and dynamic pressures to 180 

psf. During an abort event, the BALLUTE would have prevented physio-

logical harm to the astronauts from violent spinning after man and seat had 

separated and prior to the inflation of the terminal descent parachute. 

a TM , Goodyear Aerospace Corporation, Akron, Ohio. 
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Sky diver (right) wi th helmet-mounted movie camera 
pho tographs first l ive tes t jump with Gemini Ballute 

Recovery Systems ________________ AEROSPACEGOODYEAR • 

METEOROLOGICAL BALLUTES 
Under Contracts AF19(628)-4194 and AF19(628)-5851 with the USAF Cam-

bridge Research Laboratories, Goodyear Aerospace designed, fabricated, 

and tested a BALLUTE a sy s tem to decelerate and stabilize a 7-lb meteoro -

loci gal sounding device in vertical descent. Stability of ± 3 deg and ve l ocities 

of less than 300 fps were required within the sampling altitude envelope, 

ranging from 200,000 to 100,000 ft mean sea level (MSL) . This prog ram 

included the first practical application of extremely low-gage (fractional-

mil) plastic films in BALLUTE construction and the first BALLUTE mis-
. 4Slon at Reynolds numbers as low as 4 X 10 . 

Typical meteorological BALLUTE i s 12.5 (l in 
diam eter bUl weighs just over 1 lb 

a TM , Goodyear Aerospace Corporation , Akron, Ohio. 

Ref: Goodyear Aerospace Corp 
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Recent Experience: NASA LDSD ballute 
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Burble fence 

Inflation aid 

4.4 m 

16x gores 

Riser 

8x 6” tall 
ram-air inlets 

8x flush ram-air 
inlets (not shown 
in inflated state) 

Inlet support 
cords 

•  Developed as a parachute 
deployment pilot device 

•  Flown at Mach 2.7, 500 Pa in 
a blunt-body wake 

•  Specs: 
•  Silicone-coated Kevlar 

broadcloth 
•  Pyrotechnic-initiated 

methanol inflation aid 
•  Mortar-deployed 
•  18 kg mass 
•  8000 N drag force 

•  Heavily relied on analysis, 
with minimal testing prior to 
supersonic flight 
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LDSD Supersonic Flight Dynamics Test Overview 
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Recent Experience: NASA LDSD Supersonic 
Test:  
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After success of LDSD ballute, how can this 
be infused into a Mars mission? 
 
1.  Parachute deployment (same use as LDSD) 
2.  Supersonic decelerator 

–  On a heavy robotic mission (4.4m trailing ballute 
against 6 m attached toroid) 

–  Aerodynamic decelerator assisting supersonic 
retropropulsion (human-scale) 
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Ballutes as Parachute Deployment Devices 
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Preliminary ballute 
sizing for parachute 
deployment: 

Assumptions: 
•  Constant deployment 

mass 
•  Constant Cd 
•  Constant q 
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Nominal inputs represent typical Mars conditions 
•  Mach 1.7, 400 Pa parachute deployment 
•  200 kg/m2 vehicle ballistic coefficient 
•  38 m/s parachute line stretch velocity 
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Parachute Deployment Device (PDD):  
Mass Comparison 
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In order to compare mortars to pilot 
deployment, we consider the 
following: 
•  Parachute mass model, f(D0) 
•  Ballute mass model, f(D0) 
•  Mortar mass model, f(meject) 
•  Pilot ballute model, (previous 

chart) 

 
Conclusions: 
•  Ballute PDD offers mass savings 

over parachute mortar 
•  Parachute mortar has advantage 

of single stage system 
Trade simplicity with mass 
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•  Future Mars landing mission with 
a ballistic coefficient of 230 kg/
m2 and low L/D 

–  The trajectory never achieves 
deployment conditions of the current 
technology parachutes 

•  Need for a supplementary 
decelerator. We considered “Off 
the Shelf” tech SIADs on a 4.7 m 
diameter aeroshell: 

–  Trailing ballute (4.4 m LDSD) 
–  Attached toroid (6 m LDSD) 

•  Both SIADs deployed at Mach 3 
for a direct comparison 

SIADS: Trailing Ballute vs Attached Toroid 

06/29/2016 15 



j p l . n a s a . g o v  

SIADS: Trailing Ballute vs Attached Toroid 

Trailing Ballute 
•  33 kg (4.4 m diameter + 

mortar) 
•  Relatively simple 

mechanical interface 
•  Must share aft section of 

entry vehicle with 
parachute 

Attached Toroid 
•  106 kg (6 m diameter + 

gas generators, no cover 
panels) 

•  More complicated 
mechanical interface 

•  Uses relatively empty real 
estate on back shell 

•  Requires thermal 
protection during 
hypersonic phase 
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•  Without new designs and 
qualifications, parachutes can’t 
be used with high (>= 500 kg/
m2) ballistic coefficient 
vehicles 

–  Terminal velocity exceeds Mach 
number limits for parachutes 

–  Dynamic pressure is 10x typical 

•  This defines what 
environments the ballute 
needs to survive 

–  Desire capability at Mach 4 and 5 
kPa 

Ballutes for High Ballistic Coefficient Vehicles 
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Ballute Diameter, m
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Ballute-Assisted Supersonic Retropropulsion 

Calculated deceleration 
mass as a function of 
ballute diameter. 
 
Inputs: 

–  9 metric ton entry mass, 
single stage entry, 4 m 
diameter aeroshell 

–  Low L/D (0.24) 
–  No parachute, fully 

propulsive descent 
–  Ballute is deployed at 

Mach 3.5 
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9.3 m ballute minimizes decelerations 
mass (50% less decel mass) 

4.5 m ballute provides 
25% less deceleration 
mass 
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Technology Development 

•  Heating 
–  Drives deployment Mach number 
–  Current deployment limits from conservative CFD + thermal 

model 
–  Temperature measurements are needed to validate models 

•  Fabric Development 
–  Past ballutes have used lightweight high-temperature fabrics 
–  LDSD ballute used the lightest Kevlar fabric that was available 

within schedule and budget constraints 
–  LDSD fabric had more than enough strength, but suffered from 

low seam efficiencies due to the characteristics of the fabric 

•  Ballute Accomodation 
–  Mechanical configurations should be studied to determine how to 

package a ballute and parachute into the aft of the aeroshell 
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Summary 

•  Ballutes have a lengthy history of providing drag and 
stability at supersonic conditions 

•  LDSD ballute was flown twice successfully 
–  4.4 m diameter was particularly large for the parachute 

deployment 

•  Ballutes can offer mass savings when used as a 
parachute deployment device 

•  Ballutes can also be used as supersonic decelerators 
–  Prior to parachute deployment 
–  Prior to retropropulsion 

06/29/2016 20 
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