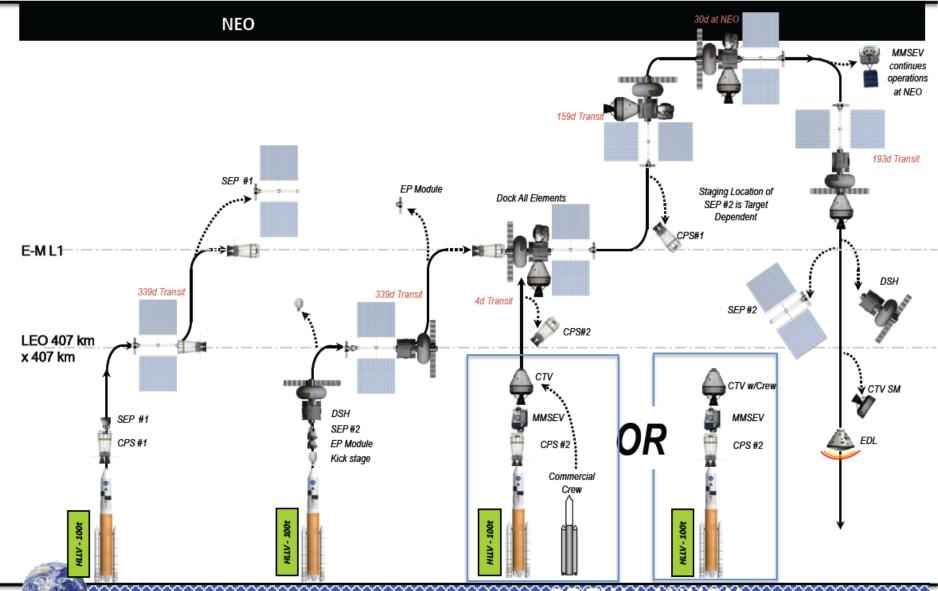


Near Term Space Exploration

with

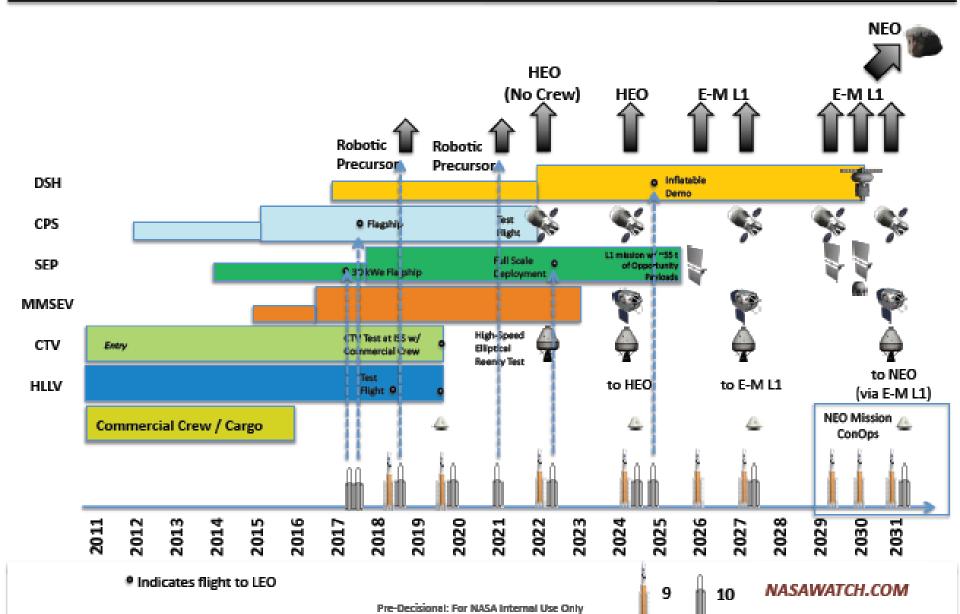
Commercial Launch Vehicles Plus Propellant Depot

Dr. Alan Wilhite and Dr. Douglas Stanley
Dale Arney and Chris Jones, GRAs
Georgia Institute of Technology/
National Institute of Aerospace


wilhite@nianet.org 757.870.5673

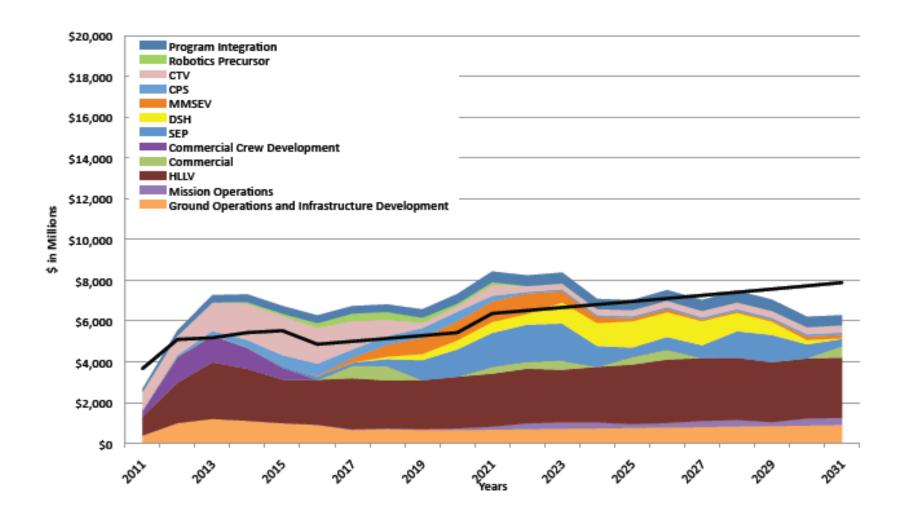
NASA's Near-Earth Object (NEO) Campaign Plans Human Exploration Framework Team 9/2/2010

Concept of Operations (NEO Crewed Missions, 100 t HLLV)

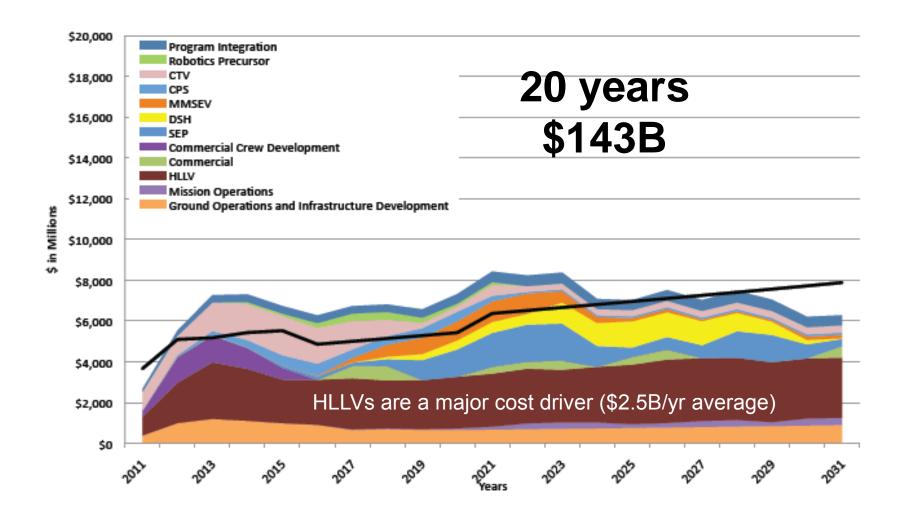


Campaign Profile

DRM 4: 100 t HLLV w/ Commercial Crew



Integrated Cost Estimates


DRM 4: 100 t HLLV w/ Commercial Crew & CTV-E Prime to Representative NEO

Integrated Cost Estimates

DRM 4: 100 t HLLV w/ Commercial Crew & CTV-E Prime to Representative NEO

The Propellant Depot Hypotheses

- Large in-space mission elements (inert) can be lifted to LEO in increments on several medium-lift commercial launch vehicles (CLVs) rather than on one Heavy Lift Launch Vehicles (HLLVs)
- The heavy in-space transportation mission elements are beyond the payload capability of medium-lift CLVs; however, 80 to 90 percent of their mass is propellant that can be delivered in increments to a <u>Propellant Depot</u> and transferred to the in-space stages
- Saves DDT&E costs of HLLV
- Low-flight-rate HLLV dominated by high unique fixed costs. Use of CLVs eliminates these costs and spreads lower fixed costs over more flights and other customers.
- Use of large re-fueled cryo stages save DDT&E/ops costs for advanced propulsion stages (e.g., SEP)

Present Propellant Depot study follows Augustine and NRC recommendations

Present Propellant Depot Study Assumptions

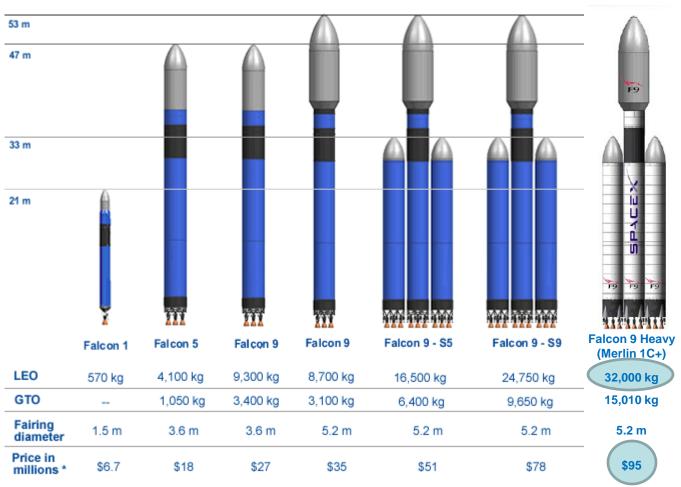
- Advanced Technology (Also required for HEFT missions, except cryo transfer)
 - Cryo Zero Boiloff (Cryo Coolers)
 - Zero g automated propellant line docking and cryo transfer
 - (Semi) Automated in-space assembly of payloads
 - Automated Rendezvous and Docking
 - In-space IVHM and launch control
- State of the Practice Technology
 - Falcon 9 Heavy
 - Aluminum structure and tanks
 - RL10 propulsion
- Sources of Costs
 - NASA's Human Exploration Framework Team briefing (9/2/2010)
 - NASA's Exploration Systems Architecture Study (NASA TM-2005-214062)
 - Space X + large margins for Falcon 9 Heavy commercial launch vehicle
 - NASA Air Force Cost Model (NAFCOM)

DRM 2B Cost Summary

Constant FY10 Dollars

Capability	IOC costs \$ in Million	Unit Cost \$ in Million	% Applied for Uncertainty
Commercial Crew Development	\$4,100	N/A	N/A
Commercial Crew Launch Vehicle	N/A	\$313	25%
Commercial Cargo Launch Vehicle Atlas AV501 Moderate	N/A	\$200	25%
Commercial Cargo Lounch Vehicle Delta IV	N/A	\$424	25%
100 mt HLLV 27.5 ' SSP Derived In line w/out Upper Stage with 5 SSME	\$17,400	\$1,860	25%
Ground Infrastructure	\$7,000	\$500	25%
70 mt HLLV 27.5 ' SSP Derived In line w/out Upper Stage with 3 SSME	\$14,300	\$1,600	25%
HLLV 33 ' RP Core*	V \$19 6	00/ka n	avload
Cryo Propulsion Stage (CPS) Medium	₋ V \$18,6	oorky p	ayiuau
CPS Heavy (if built in parallel with CPS Medium)	\$2,500	\$316	35%
LEO Tug*	\$1,800	\$450	35%
Propellant Resupply Module (PRM)	\$191	\$191	35%
Solar Electric Propulsion (SEP)	\$7,000	\$1,500	25%
Nuclear Electric Propulsion (NEP)*	\$11,100	N/A	N/A
Nuclear Thermal Propulsion (NTP)*	\$19,000	N/A	35%
MMSEV In House	\$3,800	\$210	50%
Crew Transfer Vehicle (CTV)-Entry	\$6,200	\$400	25%
CTV-Entry Prime	\$7,900	\$597	25%
CTV-Ascent/Entry	\$10,200	\$840	25%
Deep Space Habitat (DSH)	\$6,400	N/A	25%
Logistics Module	\$525	\$90	25%
Mars Surface Systems	\$11,300	N/A	35%
Mars Ascent Stage (MAS)	\$5,200	N/A	35%
Mars EDL	\$11,100	N/A	35%

Pre-Decisional: For NASA Internal Use Only



BACK

Falcon 9 Launch Vehicle Family

www.spacex.com

\$3000/kg

Falcon 9H has 6x lower \$/kg but 3x lower payload capability

^{*} Prices are all inclusive of launch range, third party insurance and standard payload integration costs.

In-Space Mission Elements for DRM 4

Crew Transfer Vehicle (CTV)

Multi Mission Space Exploration Vehicle (MMSEV)

Deep Space Habitat (DSH)

Cryogenic Propulsion Stage (CPS)

Propulsion (SEP) Electric Propulsion Module

Solar Electric

CTV-ERV	MMSEV	DSH	Kick Stage	CPS	SEP	EPM
13,500	6,700	23,600	6,300	12,600	10,600	2,900
5.2	4.5	4.57 (max stowed)	1.9	7.5	5.75 (stowed)	5.75 (stowed)
4.2	6.8	7.7*	3	12.3	9	5.1
18.4	12	115	n/a	n/a	n/a	n/a
	13,500 5.2 4.2	13,500 6,700 5.2 4.5 4.2 6.8	13,500 6,700 23,600 5.2 4.5 4.57 (max stowed) 4.2 6.8 7.7*	13,500 6,700 23,600 6,300 5.2 4.5 4.57 (max stowed) 1.9 4.2 6.8 7.7* 3	13,500 6,700 23,600 6,300 12,600 5.2 4.5 4.57 (max stowed) 1.9 7.5 4.2 6.8 7.7* 3 12.3	13,500 6,700 23,600 6,300 12,600 10,600 5.2 4.5 4.57 (max stowed) 1.9 7.5 5.75 (stowed) 4.2 6.8 7.7* 3 12.3 9

NOTES:

- Elements Not To Scale
- * Habitat length with adapters: 9.8 m
- ** Inert mass shown for CPS, SEP and EPM

In-Space Mission Elements for DRM 4

Multi Mission Crew Transfer Deep Space Space Vehicle Habitat Exploration (CTV) (D5H) Vehicle (MIMSEV)

Not Req	uired if Depo	t and Large	CPS used
	Cryogenic Propulsion Stage (CPS)	Solar Electric Propulsion (SEP)	
Kick Stage			Electric Propulsion Module (EPM)
Ņ			

Mission Element	CTV-ERV	MMSEV	DSH	Kick Stage	CPS	SEP	EPM
Mass (kg) **	13,500	6,700	23,600	6,300	12,600	10,600	2,900
Diameter (m)	5.2	4.5	4.57 (max stowed)	1.9	7.5	5.75 (stowed)	5.75 (stowed)

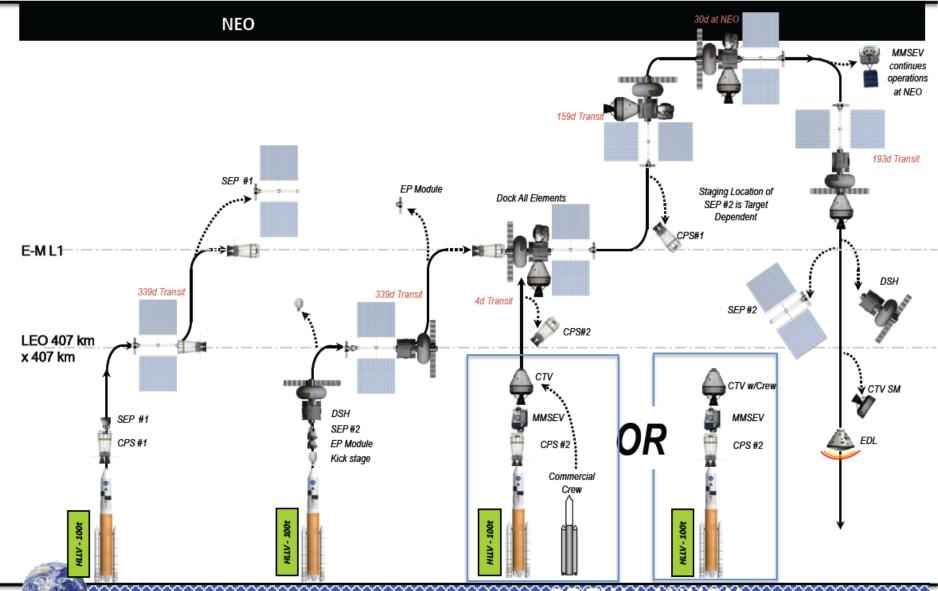
1) Falcon 9 Heavy payload is 32,000 kg; all element inerts are less

2) F9H shroud diameter is 5.2m; only CPS will not fit.

3) Depot and large CPS require larger shroud diameters

* Habitat length with adapters: 9.8 m

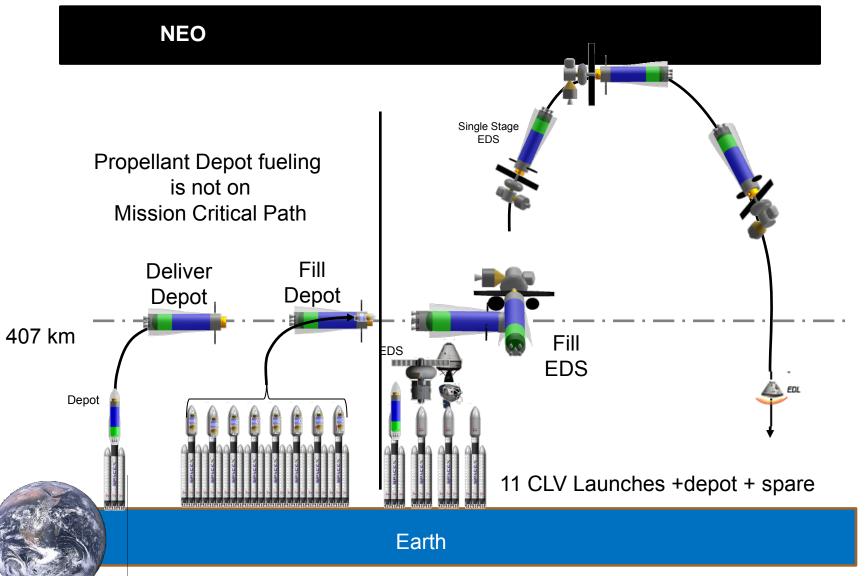
** Inert mass shown for CPS, SEP and EPM



5.1

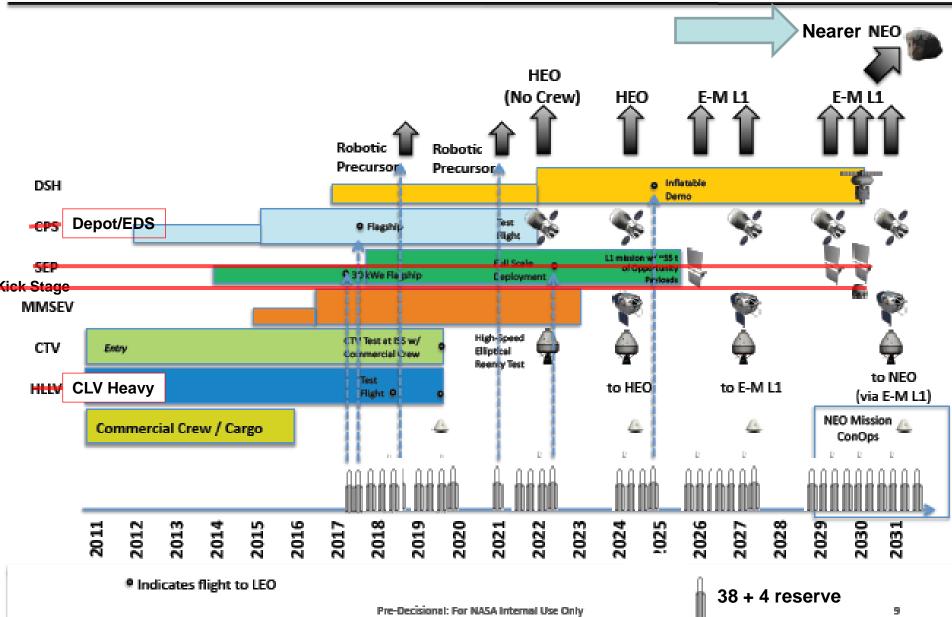
n/a

Concept of Operations (NEO Crewed Missions, 100 t HLLV)

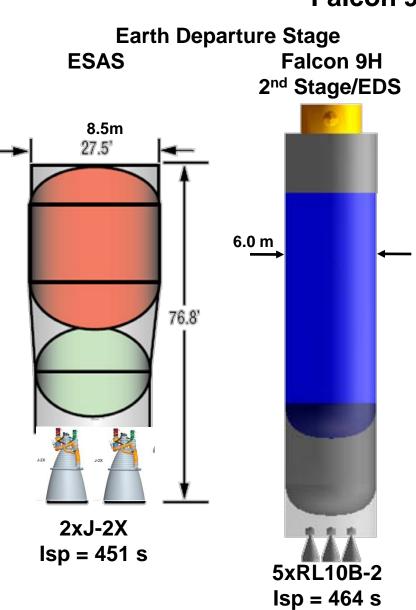


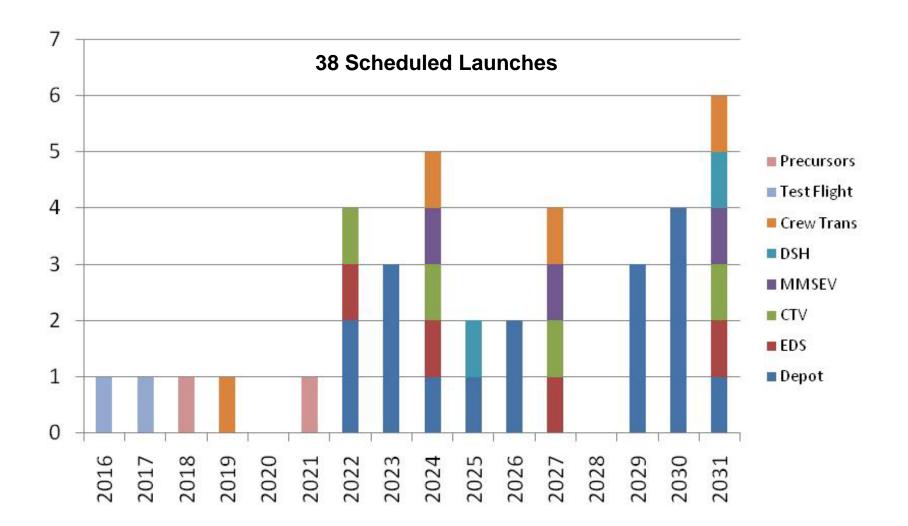
A CLV and Depot ConOp Methodology (no trades, no optimization, for initial cost comparisons only)

- Depot
 - Sized for transfer of total mission propellant
 - Derivative Earth Departure Stage (EDS) to reduce costs
 - > 5 engines to transfer to 407km orbit
 - > Only one engine required for orbit keeping (could use OMS)
 - Like EDS, carries suborbital propellant to reach 407km circular orbit
 - Decouples in-space transportation from multiple refills like other architectures
 - > Only one prop line coupling required for propellant transfer
 - > Short stay time for critical in-space elements
- Earth Departure Stage (EDS)
 - Sized for NEO, lunar, and Mars flexible path mission (delivers 2x payload as ESAS/Constellation EDS for lunar mission)
 - Suborbital/TransInjection T/Ws compatible between empty suborbital and full for transinjection
 - Used 464.5 for RL10B-2 Delta IV second stage
- Multiple CLVs could be used
 - Competition for propellant delivery (reduced costs?)
 - Not on critical mission path with multiple delivery sources if one has catastrophic failure

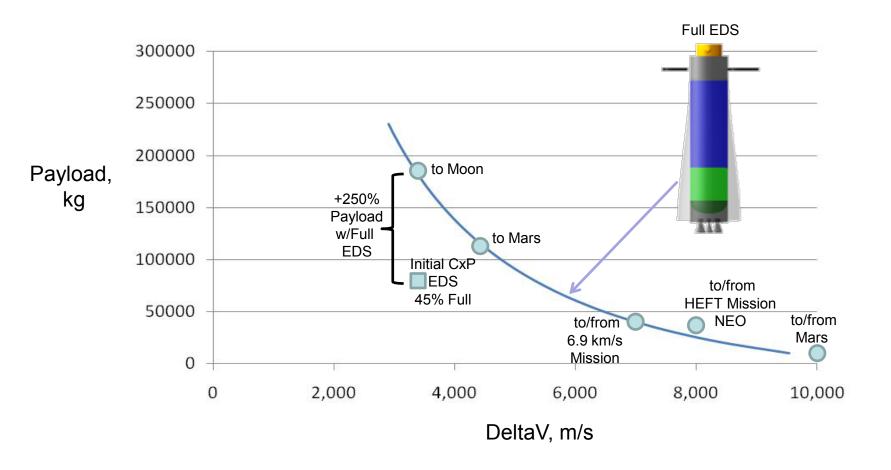

ConOps with Falcon 9 Heavy + Earth Departure Stage/Depot

Campaign Profile

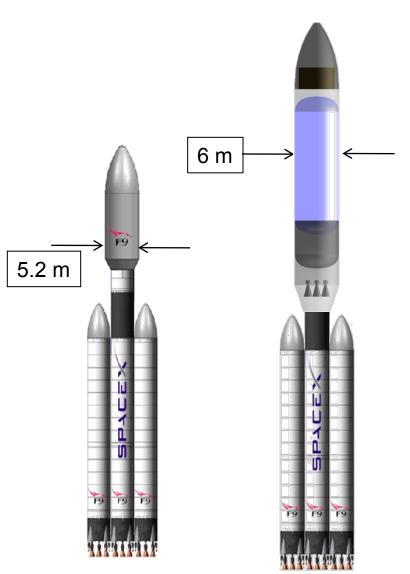

DRM 4: 100 t HLLV w/ Commercial Crew



Falcon 9 Heavy EDS


	ESAS EDS	F9H EDS
Primary Body Structure	8,887	8,950
Secondary Structures	1,105	1,214
Separation Systems	90	120
Thermal Protection System	144	291
Thermal Control System	672	672
Main Propulsion System	5,734	1,541
Power (electrical)	641	641
Power (Hydraulic)	183	89
Avionics	195	195
Cryocooler		3,639
Misc.	59	59
Shroud and Adapters		7,100
Dry	17,711	24,511
Growth	1,632	2,259
Dry w/Growth	19,343	26,770
Residuals	2,408	2,408
Reserves	285	285
In-flight Losses	27	27
Shroud and Adapters		(7,100)
Burnout Mass	22,063	22,390
Propellant to LEO/from Depot	123,061	39,349
Engine Purge Helium	24	24
Payload delivered to LEO	42,800	0
Additional Margin or Propellant	101,526	16,037
Suborbital Gross Mass (kg)	289,474	77,800
Empty Mass	22,063	22,390
IMLEO Payload	76,000	43,800
Propellant Left	123,061	16,037
Additional Depot Propellant		208,549
Total Propellant	123,061	224,586
Propellant Transfer Hwd		-3000
Orbital Gross Mass (kg)	221,124	287,776
DeltaV Capability, m/s	3,596	6,906

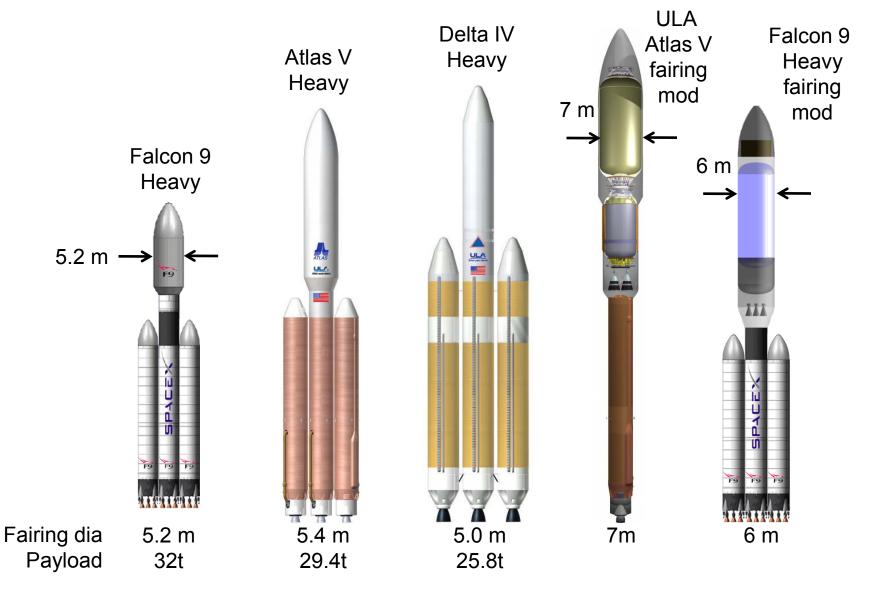
Falcon 9 Heavy Launch Schedule



Earth Departure Stage Performance Map

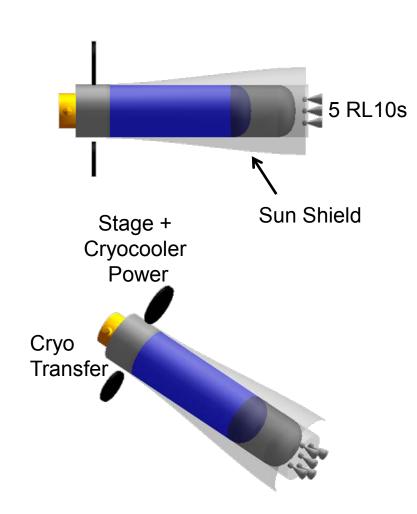
Earth Departure Stage for Falcon 9 Heavy

Falcon 9 Heavy


- 3 Falcon 9's using Merlin 1C+ engines
- 32t payload versus 100t HLLV

Earth Departure Stage (EDS)

- Same propellant as Initial CxP EDS
- EDS fineness ratio increased for F9H integration
- Replaces Falcon 9 Heavy 2nd stage
- Same suborbital deltaV as 2nd stage + circ to 407 km
- Delivered to 407 km empty and fueled by Depot
- Lightly loaded mostly inert EDS
- 5xRL10B-2 engines (Delta III and IV stage)
 - T/W_{suborbital} = 0.72 (Falcon 9 2nd stage=0.6)
 - $T/W_{Orbital}$ = 0.15 (when full + payload)
- 4,100 m/s and 100t payload (Mars Injection)
- Replaces SEP, EPM, CPS, Kick Stage

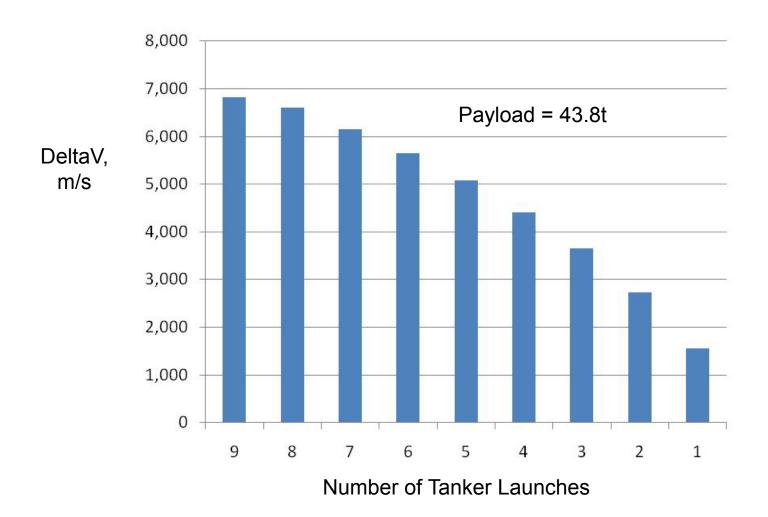

National Institute
of Aerospace

Daniel Guggenheim School of Aerospace Engineering

LOX LH2 Propellant Depot

	ESAS EDS	F9H EDS
Primary Body Structure	8,887	8,950
Secondary Structures	1,105	1,214
Separation Systems	90	120
Thermal Protection System	144	291
Thermal Control System	672	672
Main Propulsion System	5,734	1,541
Power (electrical)	641	641
Power (Hydraulic)	183	89
Avionics	195	195
Cryocooler		3,639
Misc.	59	59
Shroud and Adapters		7,100
Dry	17,711	24,511
Growth	1,632	2,259
D		20. 770
Dry w/Growth	19,343	26,770
Residuals	19,343 2,408	26,770
Residuals	2,408	2,408
Residuals Reserves	2,408 285	2,408 285
Residuals Reserves In-flight Losses	2,408 285	2,408 285 27
Residuals Reserves In-flight Losses Shroud and Adapters	2,408 285 27	2,408 285 27 (7,100)
Residuals Reserves In-flight Losses Shroud and Adapters Burnout Mass	2,408 285 27 22,063	2,408 285 27 (7,100) 22,390
Residuals Reserves In-flight Losses Shroud and Adapters Burnout Mass Propellant to LEO/from Depot	2,408 285 27 22,063 123,061	2,408 285 27 (7,100) 22,390 39,349
Residuals Reserves In-flight Losses Shroud and Adapters Burnout Mass Propellant to LEO/from Depot Engine Purge Helium	2,408 285 27 22,063 123,061 24	2,408 285 27 (7,100) 22,390 39,349

F9 Heavy Propellant Delivery


Falcon 9 Heavy

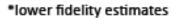
Altitude	407 km
AR&D DV	30 m/s
Payload to 407km	29.4 t
Tanker	
Propellant Del.	26.5 t
Inert	2.9 t
PMF	0.9

8 flights + spare to fill up depot/EDS For 6.9 km/s mission

EDS Capability

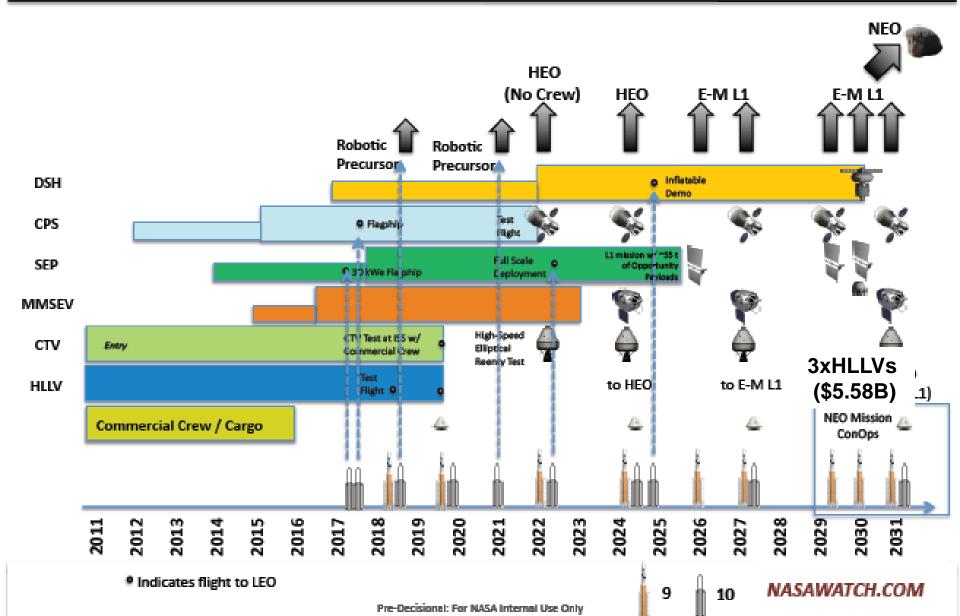
Cost Analysis

- Program Baseline
 - HEFT/NEO program study 9/2/2010
- Sources of Cost from Internet and NAFCOM
 - NASA's Human Exploration Framework Team briefing (9/2/2010)
 - NASA's Exploration Systems Architecture Study (NASA TM-2005-214062)
 - SpaceX + large margins for Falcon 9 Heavy commercial launch vehicle
 - NASA Air Force Cost Model (NAFCOM)


DRM 2B Cost Summary

Constant FY10 Dollars

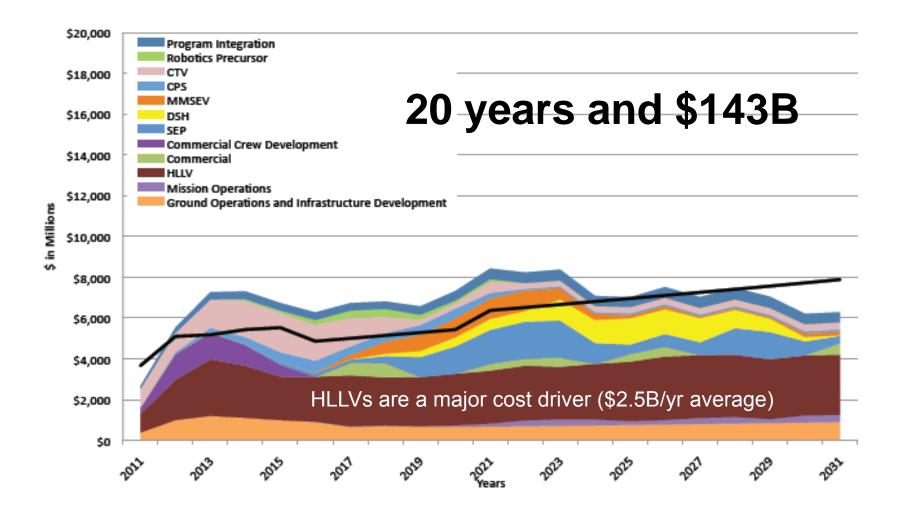
Canability	IOC costs	Unit Cost	% Applied for
Capability	\$ in Million	\$ in Million	Uncertainty
Commercial Crew Development	\$4,100	N/A	N/A
Commercial Crew Launch Vehicle	N/A	\$313	25%
Commercial Cargo Launch Vehicle Atlas AV501 Moderate	N/A	\$200	25%
Commercial Cargo Launch Vehicle Delta IV	N/A	\$424	25%
100 mt HLLV 27.5 ' SSP Derived In line w/out Upper Stage with 5 SSME	\$17,400	\$1,860	25%
Ground Infrastructure	\$7,000	\$500	25%
70 mt HLLV 27.5 ' SSP Derived In line w/out Upper Stage with 3 SSME	\$14,300	\$1,600	25%
HLLV 33 ' RP Core*	\$17,700	\$1,600	25%
Cryo Propulsion Stage (CPS) Medium	\$3,200	\$175	35%
CPS Heavy (if built in parallel with CPS Medium)	\$2,500	\$316	35%
LEO Tug*	\$1,800	\$450	35%
Propellant Resupply Module (PRM)	\$191	\$191	35%
Solar Electric Propulsion (SEP)	\$7,000	\$1,500	25%
Nuclear Electric Propulsion (NEP)*	\$11,100	N/A	N/A
Nuclear Thermal Propulsion (NTP)*	\$19,000	N/A	35%
MMSEV In House	\$3,800	\$210	50%
Crew Transfer Vehicle (CTV)-Entry	\$6,200	\$400	25%
CTV-Entry Prime	\$7,900	\$597	25%
CTV-Ascent/Entry	\$10,200	\$840	25%
Deep Space Habitat (DSH)	\$6,400	N/A	25%
Logistics Module	\$525	\$90	25%
Mars Surface Systems	\$11,300	N/A	35%
Mars Ascent Stage (MAS)	\$5,200	N/A	35%
Mars EDL	\$11,100	N/A	35%



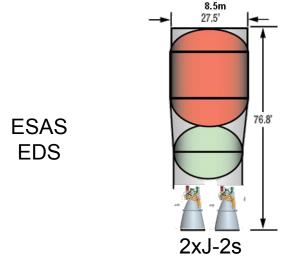
BACK

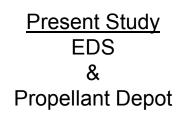
Campaign Profile

DRM 4: 100 t HLLV w/ Commercial Crew



Integrated Cost Estimates

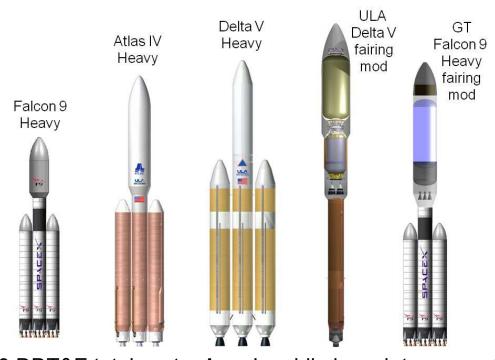




EDS/Propellant Depot Costs

EDS configuration	Suborbital Burn	Suborbital Burn	Suborbital Burn	EDS Used as Upper Stage with 2 J-2Ss
Heritage Vehicle	13.1	7.4	15	13.1
DDT&E	\$1,353 M	\$1,118 M	\$700 M	\$1,782 M
Production (fixed \$/yr)	\$152 M*	\$56 M**	\$152 M*\$152 M***	
Production (var \$/flt)	\$56 M	\$59 M	\$56 M	\$56 M***

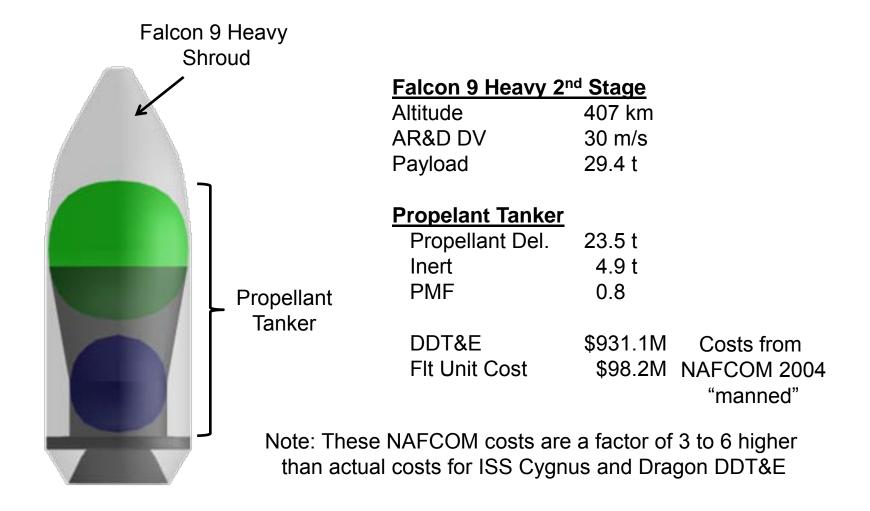
Ref. NASA TM-2005-214062


Present Study

- 2xNASA ESAS EDS DDT&E and recurring costs
- J-2s do not have to be developed; DDT&E not reduced
- -Thus, approximately 4xESAS EDS DDT&E

DDT&E	\$3,564M
Production (fixed \$/yr)	\$302M
Production (var \$/yr)	\$118M

Falcon 9 Heavy Costs


Falcon 9 DDT&E total cost = Ares I mobile launch tower cost = NAFCOM cost/8

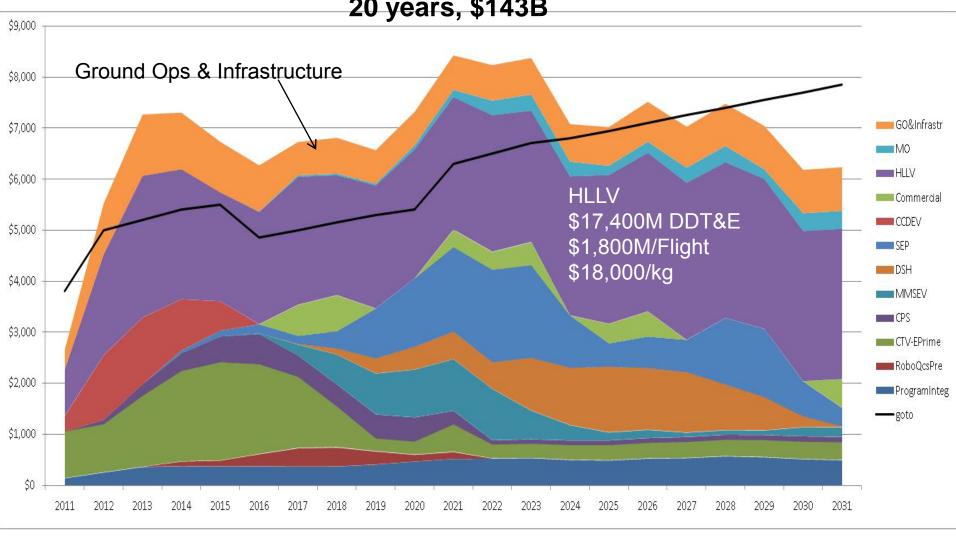
	DDT&E,\$M	\$M/launch	Payload, kg	\$/kg
Falcon 9	\$450	\$50	8,700	\$5,747
Falcon 9 Heavy	\$335	\$95	32,000	\$2,969

Tripled quoted Falcon 9 Heavy DDT&E/pad upgrade costs and Doubled Falcon 9 Heavy Launch costs for analysis!!

Propellant Tanker Costs

Summary of Cost Assumptions

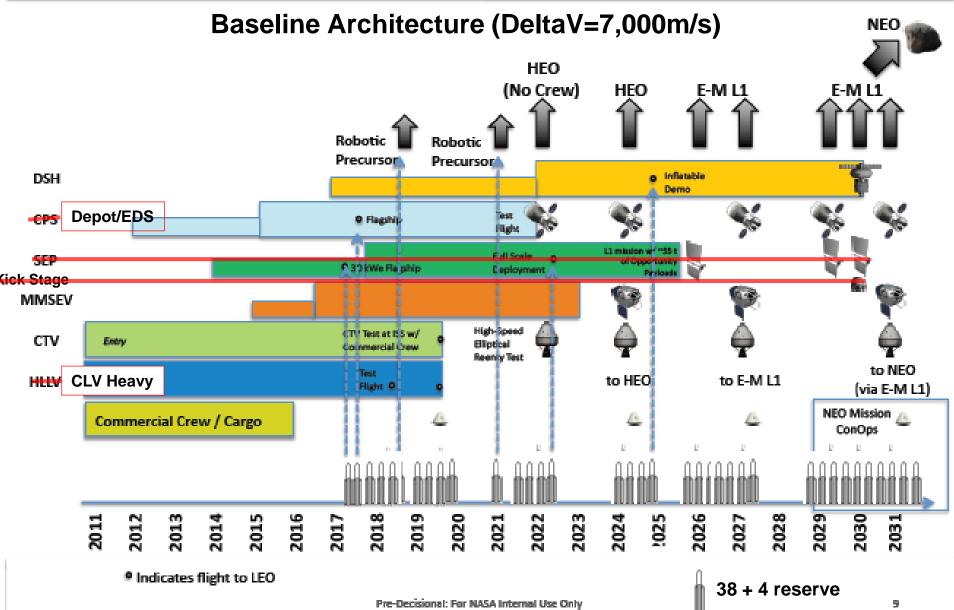
- Used NASA cost estimates, NASA/Air Force Cost Model, and Space X estimates with very large margins
- Deleted DDT&E and recurring cost from HEFT:
 - HLLV, SEP, CPS, Kick Stage
- Did not modify costs of
 - Ground Ops and infrastructure (\$7B!! In non-recurring and \$1B/year in recurring – need to know how much related to HLLV)
 - Mission Operations (but have three less mission elements to operate)
 - Commercial launch (HEFT assumed EELV instead of F9H)
 - Commercial crew development
 - DSH, MMSEV, CTV space elements
 - Initial robotic missions
 - Program Integration (but should be function of program costs and number of elements)
 - Did not reduce program schedule for test flights of elements not included
 - > Could potentially save two years at about \$4B/year fixed/carrying costs


Summary of Cost Assumptions (cont.)

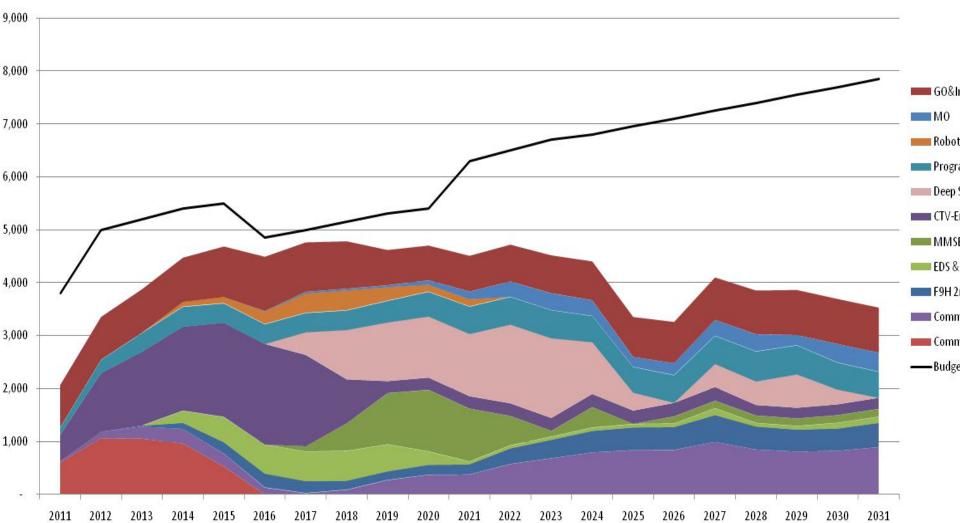
- EDS and Prop Depot: ~ 4 x NASA ESAS initial DDT&E and recurring cost for EDS to account for
 - Development differences between Prop Depot and EDS
 - Unknown cost of cryocoolers
 - But used existing RL10s rather than new engines
- Falcon 9 Heavy
 - 3 x SpaceX DDT&E/pad estimate (even though Space-X says they are paying the DDT&E cost to compete with EELV)
 - 2 x SpaceX recurring cost of \$95M
 - One Falcon 9 Heavy launch added for every 9 flights for reliability and/or management reserve
- Propellant Tanker used NAFCOM "manned" costs rather than lower "unmanned" cost (significantly higher than Cygnus and Dragon DDT&E)
- Depot life of 10 years maximum

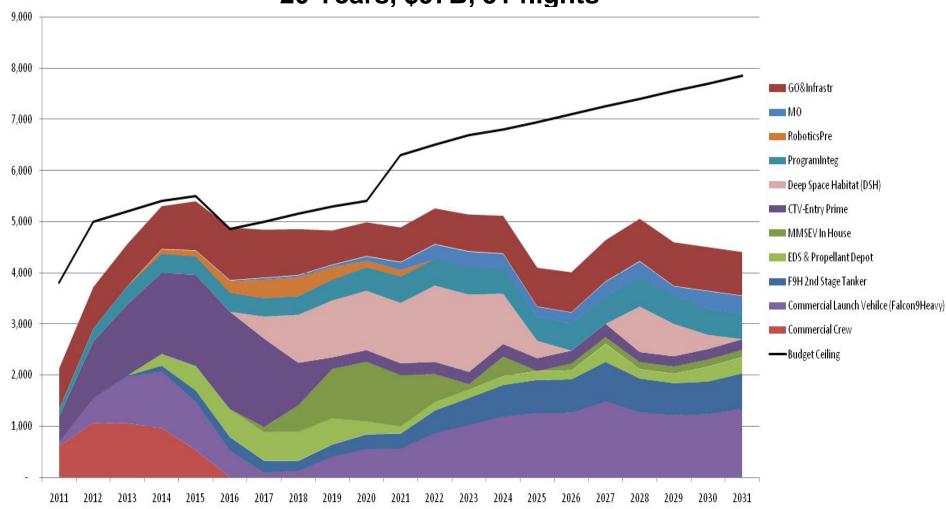
National Institute of Aerospace

Daniel Guggenheim School of Aerospace Engineering

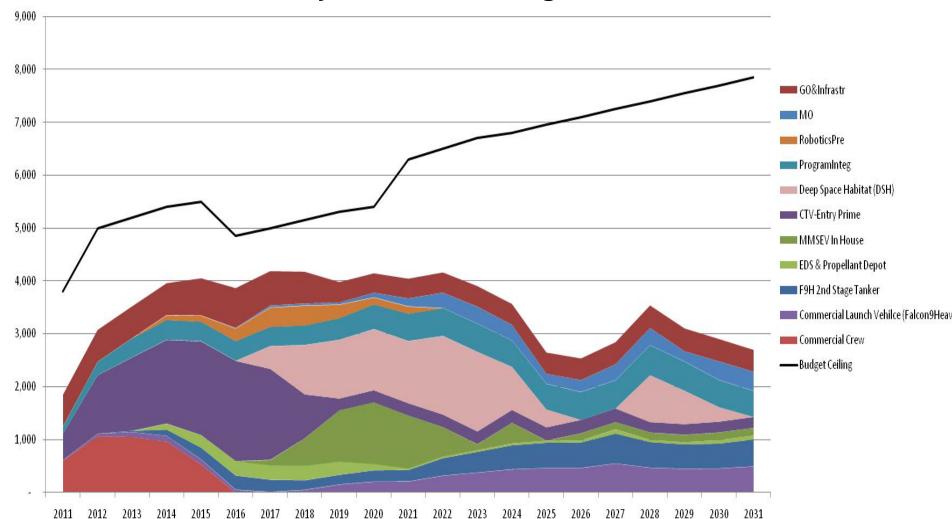

Human Exploration Framework Team - Sept 2010 20 years, \$143B

Campaign Profile




Baseline Depot/EDS, 20years, \$86B, 38 flights

National Institute of Aerospace


Daniel Guggenheim School of Aerospace Engineering

Heavy Depot/EDS for Distant NEO Mission 20 Years, \$97B, 51 flights

Baseline Depot/EDS w/SpaceX cost without margin 20years, \$73B, 38 flights

Forward Work

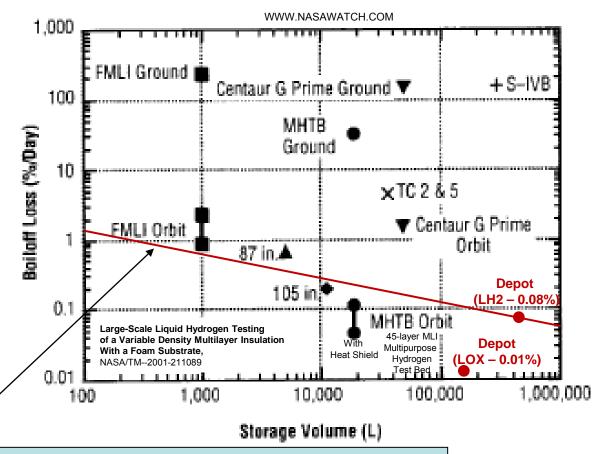
- Refine current results
 - Validate cryocooler performance, mass, and power
 - Refine EDS/depot mass/performance
 - Validate F9H performance and masses with SpaceX
 - Refine RF9H "large" shroud mass with trajectory loads and structural analysis
 - Refine manifesting for latest HEFT 2 NEO mission with HAT Team
 - Validate number of launches/pad and capacity/cost assumptions with SpaceX
 - Refine costs with HAT Team and remove multiplication factors
 - > Determine correct way to account for NASA indirect costs
 - Determine risk/LOM and compare with HEFT non-depot approach
 - Compare apples-to-apples cost/LOM/other FOMs with latest HEFT NEO mission and multi-mission non-depot approaches

Forward Work

- Additional trades
 - Determine "right-size" EDS/depot for multi-mission, capability driven architecture (balance lunar, L1, Mars, NEO requirements)
 - Trade single- vs. two-stage EDS
 - Add second supplier (e.g.,Orbital) and cost COTS-like procurement approach (also look at using EELVs and international partners)
 - Trade EDS with LOX/hydrocarbon engines
 - > Smaller launch volume
 - > Lower cryocooler requirements with hydrocarbons or storables
 - Compare baseline approach with Falcon-derived triple-core HLLV with single (32 mT) core developed first and used in conjunction with depot until need triple core for human Mars
 - > Provides phased HHLV capability to fit within budget
 - > Also examine use of EELV-derived triple core
 - > Uses large Merlin 2-like hydrocarbon engines
 - Trade benefits of depots for HLLV-based architectures (e.g., Stanley HEFT 2 white paper)

Issues

- Authorization Act language
- Requires longer storage of cryo propellants than alternatives and addition of zero-g transfer technologies
- Multiple launches statistically will result in more launch failures, but most launches are to the depot and not on critical mission path
- NASA loses some control/oversight
- Added complexity of depot



Pros

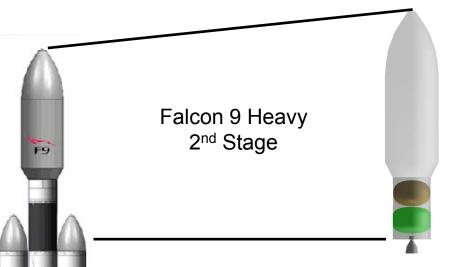
- Tens of billions of dollars of cost savings and lower up-front costs to fit within budget profile (no HLLV-based options fit within budget)
- Launch every 2 or 3 months rather than 1 every 18 months with HLLV
 - Provides experienced and focused workforce to improve safety
 - Operational learning for reduced costs and higher launch reliability.
- Allows multiple competitors for propellant delivery
 - Competition drives down costs
 - Alternatives available if critical launch failure occurs
 - Low-risk, hands-off way for international partners to contribute
- Reduced critical path mission complexity (AR&Ds, events, number of unique elements)
- Provides additional mission flexibility by altering propellant load
- Commonality with commercial crew/COTS vehicles will allow sharing of fixed costs between programs and "right-sized" vehicle for ISS
- Stimulate US commercial launch industry

Appendix

Variable Density 45 Layer MLI (GT DRAWW model) LH2

 $m_{boil off} = 2.584*(LH2 mass, kg)^{-1/3})$ percent LH2/day $m_{MII} = 1.95 \text{ kg/m}^2 \text{ (tank area, m}^2)$

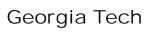
LOX


 $m_{boil off} = 0.6416*(LOX mass, kg)^(-1/3)$ percent LOX mass/day $m_{MLI} = 1.95 \text{ kg/m}^2 \text{ (tank area)}$

Methane

 $m_{boil off} = 0.4681*(CH_4 mass, kg)^(-1/3)$ percent CH_4 mass/day $m_{MII} = 1.95 \text{ kg/m}^2$ (tank area)

National Institute of Aerospace



Falcon 9H
2nd Stage

Replaced with

EDS
for
Depot
And
Space Missions

	F9H Stage 2	F9H EDS
Empty, kg	2,400	24,869
Propellant, kg	43,400	35,285
Payload, kg	29,610	(Propellant left) 15,256
Initial, kg	75,410	75,410
Engine	1xMerlin 1cVacuum	5xRL10B-2
Isp, s	342	465
Thrust, N	411,400	549,200
DV, m/s	2,874	2,874
T/W	0.556	0.743
IMF	0.052	

National Institute of Aerospace

	HEFT	CLV+Depot
Commercial Crew Development	4,417	4,417
CLV (+ Tanker)	3,758	23,527
100 mt HLLV	54,089	
Cryo Propulsion Stage (CPS)	4,781	
LEO Tug*	1,881	
Solar Electric Propulsion (SEP)	14,822	
MMSEV In House	6,321	6,321
CTV-Entry Prime	15,197	15,197
Deep Space Habitat (DSH)	9,576	9,576
ProgramInteg	9,187	9,187
RoboticsPre	1,703	1,703
MO	3,165	3,165
GO&Infrastr	16,801	16,931
EDS/Depot		4,644
	145,698	94,667